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Abstract
Decay type diffusion-limited reactions (DLR) over a rough surface generated
by a random deposition model were performed. To study the effect of the
decay profile on the reaction probability distribution (RPD), multifractal scaling
analysis has been carried out. The dynamics of these autopoisoning reactions
are controlled by the two parameters in the decay function, namely, the initial
sticking probability (Pini) of every site and the decay rate (m). The smaller the
decay rate, the narrower is the range of α values in the α–f (α) multifractal
spectrum. The results are compared with the earlier work of DLR over a
surface of diffusion-limited aggregation (DLA). We also considered here the
autopoisoning reactions over a smooth surface for comparing our results, which
show clearly how the roughness affects the chemical reactions. The q–τ (q)
multifractal curves for the smooth surface are linear whereas those for the rough
surface are nonlinear. The range of α values in the case of a rough surface is
wider than that of the smooth surface.

PACS numbers: 05.45.Df, 82.65.+r, 82.45.Jn

1. Introduction

Many rough surfaces show fractal structures such as the surface of mountains, deposited thin
films, surfaces formed by fracture of a material and sand-blasted metal surfaces. Solids with
rough surfaces are extremely common in nature and they appear in many industrial processes.
They may be created by various physical or chemical mechanisms such as deposition, erosion,
corrosion and wear, dissolution, matching and fracture. The study of these surfaces, their
physical and structural properties, effect of surface roughness in physical, chemical and
biological processes, is consequently of great interest for many practical purposes. The effect
of surface roughness and fractal structure on many physical or chemical processes has been
studied previously. It includes ac response of a rough surface [1], capacitance and leakage
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current of an insulating film [2], reaction rate [3], insulation breakdown mechanism [4], eddy
current losses [5], heterogeneous catalysis [6, 7], propagation through waveguides [8, 9],
grating [10], scattering [11], adsorption on polymers [12], etc.

The diffusion-limited reaction mechanism [13–16] is important because it is an elementary
step of some complex reactions and can provide some useful information to further understand
the principles of those complicated catalytic reactions. As the geometry of the surface plays
a key role in catalytic reactions, it is important to study the effect of surface roughness on
catalytic reactions. Recently some efforts have been made along this line. Avnir and his
group [17] reported the multifractal scaling analysis of diffusion-limited reactions over two
mathematician-made fractal surfaces, the Cantor set (CS) and the Devil’s staircase (DS). They
pointed out that the DS surface shows higher position sensitivity than the CS surface does,
even if they have the same fractal dimension. Mai et al [18] observed the strong influence
of the lattice structure on the reaction and in the case of fast particle diffusion, the effect of
lattice structure became unimportant. Diffusion-limited reactions (DLR) over the surface of
diffusion-limited aggregation (DLA) were performed by Lee et al [19], who found a wider
range of α values than for CS and DS.

So far, the sticking probability over every active site has been assumed to be 1 and kept
constant in most simulations. In reality, the sticking probability is most likely to vary as the
reaction proceeds, which implies that the sticking probability over an active site could be a
function of reaction events occurring on that site. Lee et al [19] analysed the diffusion-limited
reactions in which the sticking probability of every active site was defined as a decay and
enhancing function of reaction events, over a DLA surface.

Our previous investigation of diffusion-limited reaction over the rough surface generated
by the random deposition (RD) model shows that the surface roughness affects strongly the
chemical reaction even in the basic reaction of the DLR mechanism [20]. It gives a wider
f (α) spectrum as compared to the smooth surface. The aim of this paper is to study the
diffusion-limited reaction with the event-dependent sticking probability of the active site, over
the rough surface, and to compare the results with DLR over DLA and over a smooth surface.
The present paper is organized as follows. In section 2, the method of generation of the rough
surface, two different cases of autopoisoning reaction and the details of the multifractal scaling
analysis are given. In section 3, we present and discuss the results. Conclusions are given in
section 4.

2. Method

The RD model [21] has been used to generate the rough surface. In the RD model, particles
simply rain down onto a smooth surface. The particles move along straight-line trajectories
until they reach the top of the column in which they are dropped, at which point they stick
to the deposit and become part of the aggregate. The rough surface can also be generated by
other models such as random deposition with surface diffusion (RDSD), ballistic deposition
(BD), etc [21]. In RDSD, the particles are allowed to diffuse on the surface within a finite
distance from the column in which they were dropped, until they find the position with the
minimum height. In BD, the particles rain down onto the substrate following parallel straight-
line trajectories in the columns in which they were dropped until they first encounter a particle
in the deposit. This can be a particle at the top of the same column or a particle in one of
the nearest neighbouring columns. For the surface of RD, there are no correlations between
different columns whereas for RDSD and BD, there are correlations between the columns.
The surface generated by ballistic deposition is a porous complex structure. Recently, we
have studied and compared the effect of surface roughness on diffusion-limited reactions with
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Figure 1. Rough surface generated by rain model for L = 500 lattice units.

sticking probability 1 over the rough surface of RD and that of RDSD [22]. The effect of
surface roughness on the autopoisoning reactions, if there is a correlation between different
heights and if the surface is porous, will be considered in our future study.

In this study, we used 104 particles for generating the rough surface, for the length (L) of
500 lattice units. The rough surface generated is shown in figure 1.

The surface thickness is obtained as

t =
[∑

i (hi − H)2

Ns

]1/2

where hi is the height of the ith column, H =
∑

i hi

Ns
is the mean deposition height and Ns is the

number of surface sites. Here Ns = L.
We defined the surface roughness as

Sr = hmax − hmin

where hmax and hmin are the maximum and minimum heights among the columns, respectively.
After generating the rough surface, the releasing particle is changed to a reacting species.

When this reacting particle comes onto the site of the rough surface, it gets absorbed with
probability P. In this simulation, the event-dependent sticking probabilities are introduced by
a decay function defined as

P(ni) = Pini exp(−ni/m)

where Pini is the initial sticking probability for every site, ni is the reaction counts over active
site i and m is the tuning factor to adjust the rate of decay.

For this function, different initial sticking probabilities, Pini, and different tuning factors,
m, are adopted to examine the influence on RPD. This process can be achieved by generating a
random number when the reacting particle visits the rough surface site and checking whether
it is less than or equal to P. Two cases for the autopoisoning DLR reaction are considered.

Case 1. When the random number generated is less than or equal to P, the reaction count on
that surface site is increased by one, otherwise a new reacting particle is launched.

Case 2. When the random number generated is less than or equal to P, the reaction count on
that surface site is increased by one. If it is greater than P, it is allowed to move (and react)
in a randomly selected direction, if the height of the adjacent column is less than that of the
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column in which the particle is launched. Even if it does not react with the sites in the adjacent
columns, it is further allowed to react to the sites in the next column if its height is less than
that of the column under consideration, and so on. The reacting particle is not allowed to
climb, if the height of the adjacent column is larger than that of the present column. In such
cases, a new reacting particle is considered.

We also allowed the reacting particle to move in some range over the surface but the
results are similar to that for case 2, so those results are not included in this paper. Case 2
is also used for the smooth surface for comparison of our results. In both cases, the columns
in which the reacting particle is to be launched are selected randomly. The reacting particles
are allowed to reach the top of the column, which has maximum height among columns i,
(i − 1) and (i + 1), where i is the column selected randomly. In this simulation, 5 × 104

particles are launched and the reaction probabilities of different surface sites are recorded and
analysed.

The multifractal formalism has been successful in describing many phenomena of current
interest to physicists and chemists, ranging from turbulence [23], onset of chaos [24], fracture
[25] and current distribution of percolation cluster [26] of growth probability distribution
of diffusion-limited aggregation. Multifractal scaling was also used earlier for scaling of
molecular spectra [27], the nature of the wavefunction in the Anderson model [28], fluctuations
in a transmission line [29] and the diffusion-limited reactions over a fractal surface [19]. It
is useful in the study of processes in the environment of complex geometry and it helps us to
extract the fractal characters from the reaction probability distribution (RPD) picture through
the f (α) spectrum. We apply multifractal scaling which relates the analysis of the distribution
of the reaction probabilities over the length of the rough surface. The steps in the multifractal
scaling analysis are given below. For details one can refer to the article by Halsey et al [30].

The three basic equations in the multifractal scaling analysis are

Mq =
∑

i

P
q

i =
∑

p

n(P )P q ∝ L−τ(q) (1)

τ (q) = qα(q) − f (α) (2)

d

dq
[τ (q)] = α(q) (3)

where Mq is the qth-order moment of RPD, τ (q) is the scaling exponent, Pi is the reaction
probability of site i, n(P) is the number of sites with reaction probability P and L is the length
of the surface. Among these three equations, equation (2) is obtained by the following scaling
assumptions used in the limiting case of large L:

P(q) ∝ L−α(q) (4)

n[P(q)] ∝ Lf (α) (5)

where P(q) denotes the value of P that dominates the sum in equation (1) for the qth-order
moment. Substitution of equations (4) and (5) into equation (1) and taking the logarithm of
the maximum elements as an approximation of the logarithm of the sum yields equation (2).
Finally, equation (3) represents the value of α that dominates the summation term in
equation (1) and it can be transferred to a more explicit form,

α(q) = d

dq
[τ (q)] =

∑
i P

q

i ln(Pi)∑
P

q

i ln(1/L)
. (6)

In practice, the quantities τ (q), α(q) and f (α) can be computed as follows. The probability
distribution is first determined from the simulation. Then for each L, τ (q) is calculated from
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Table 1. Number of active sites for cases 1 and 2 for different values of m and Pini.

Number of active sites

Case 1 Case 2

m = 300 254 556
m = 150 254 681
m = 30 254 1346
m = 5 254 1810

Pini = 1 254 556
Pini = 0.7 254 497
Pini = 0.4 254 423
Pini = 0.01 200 211

equation (1). α(q) is then computed from equation (6). By knowing τ and α, one can compute
f (α) from equation (2). The distribution of the measure Pi is called multifractal if all these
moments (equation (1)) scale as power laws with an infinite set of independent exponents
τ (q). For q = 0, equation (1) reduces to the number of boxes which have a nonzero measure.
If every box has some finite measure, M0 coincides with N (total amounts of fractal objects),
hence τ (q) = −D, namely the fractal dimension of the fractal object. Also, the normalization∑

i Pi = 1 requires that τ (1) = 0. For a complete uniform distribution, Pi = 1/N and τ (q) =
D(q − 1), the τ (q)–q curve will be linear (the slope is D) and then f (α) = α = D, i.e. D is also
the fractal dimension of all the subsets. Another linear relationship between τ and q can also
be held under the uniform distribution condition, Pi = 1/C > 1/N, where C is the number of
active sites having nonzero reaction probabilities. In this case the slope will be smaller than
D, the fractal dimension of the fractal object. According to the above argument, it is useful to
define Dq via

τ (q) = Dq(q − 1). (7)

For multifractal behaviour, Dq exhibits a nontrivial dependence on q.

3. Results and discussion

The roughness and thickness determined for the rough surface generated by random deposition
are 28 and 4.52 lattice units, respectively. The sticking probability for the autopoisoning
reaction over every active site is defined by the decay function, which is a function of the
reaction occurring on that site,

P(ni) = Pini exp(−ni/m).

Accordingly, the two parameters Pini and m control the properties of the decay function, and
thus the reaction dynamics. The lower and higher values of m correspond to the faster and
slower decay rates, respectively. The reaction events occurring at each site on the surface are
recorded by counting the number of visits by the reacting particle and the reaction probability
is calculated at each site. The plot of reaction probability as a function of active site position
gives the position sensitivity of the reaction probability. The active sites are numbered from
left to right and in an upward direction. Table 1 shows the number of active sites for different
values of m and Pini for both cases.

We first verify the effect of m on the RPD for both cases. Simulations were performed
with Pini = 1.0 and m = 5, 30, 150 and 300, respectively, over 5 × 104 reaction events. The
RPD profiles are demonstrated in figures 2(a) and (b) for cases 1 and 2, respectively, and
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Figure 2. Reaction probability as a function of active site position: (a) case 1, (b) case 2, with
m = 300, 150, 30 and 5, for a rough surface.
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Figure 3. Reaction probability as a function of active site position: (a) case 1, (b) case 2, with Pini
= 1.0, 0.7, 0.4 and 0.01, for a rough surface.

corresponding multifractal characteristics are shown in figures 4 and 7. From figure 2 and
table 1, for case 1, the numbers of active sites are equal for different values of m, but for case 2,
it decreases with an increase in m. Similar results for the decrease in the number of active sites
with an increase in m are observed for DLR over DLA [19]. The range of reaction probabilities
is increased with an increase in m for both cases. The range of reaction probability is similar
in both cases. But the difference can be seen in the lower values of probabilities. In case 1,
all the active sites have higher probabilities, but in case 2, some active sites have reaction
probabilities close to zero. In both cases, valleys between the spikes in the RPD profile arise
mainly from the screening effect, i.e. the inner active sites are screened by the outer ones,
showing that the deep inner sites are rarely visited.

Figure 3 shows the effect of Pini values on RPD for cases 1 and 2, with m = 300. From
table 1 and figure 3, the numbers of active sites for case 1 are equal for different Pini values
(except for Pini = 0.01). But for case 2, the number of active sites increases with an increase
in the Pini values. As observed for different values of m, the range of reaction probabilities
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Figure 4. q–τ (q) curves: (a) case 1, (b) case 2, with m = 300, 150, 30 and 5, for a rough surface.

here also is increased with an increase in Pini. Also all the active sites for case 1 have
higher probability, but for case 2, some of the active sites have reaction probabilities close to
zero.

From figure 4, for case 1, the q–τ (q) relation is linear for all values of m but the slope of the
curve decreases with an increase in m. That the curves coincide neither in low nor in high values
of q indicates that the numbers of active sites with low reaction probability (for low values of q)
and with high reaction probability (for high values of q) are quite different for different values
of m. For case 2, the q–τ (q) relation is nonlinear. For q > 0, as m decreases, the curvature of
the q–τ (q) curves also decreases gradually, indicating relatively homogeneous RPD. This also
indicates that the numbers of active sites with highest reacting probability, which dominate
the sum in equation (1) in the large q region, are quite different for different values of m. The
q–τ (q) curve for m = 5 exhibits a nearly linear relationship, representing a homogeneous RPD
and the slope almost equals D, implying that the homogeneity was distributed over almost
every active site. For case 2, the q–τ (q) curves for different m coincide in the range q < 0
(except m = 5) which implies that the numbers of active sites with a small reaction probability
are nearly equal. That the curve for m = 5 does not coincide with the curves for higher m
values, for q < 0, indicates that for m = 5, the numbers of active sites with lowest reaction
probability, which dominate the sum in equation (1), are quite different from those for higher
values of m.

In figure 5, the q–τ (q) relation for cases 1 and 2, for different values of Pini, is shown. It can
be seen that the q–τ (q) curves are linear for case 1 and the slope of the curves decreases with an
increase in the Pini values. As observed for different values of m, here also the curves coincide
neither in low nor in high values of q indicating that the numbers of active sites with low reaction
probability (for low values of q) and with high reaction probability (for high values of q)
are quite different for different values of Pini. But for case 2, the q–τ (q) curves are
nonlinear. For q > 0, as Pini decreases, the curvature of q–τ (q) curves also decreases indicates
homogeneous RPD. This is due to the fact that the numbers of active sites with highest reacting
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Figure 5. q–τ (q) curves: (a) case 1, (b) case 2, with Pini = 1.0, 0.7, 0.4 and 0.01, for a rough
surface.

probability, which dominate the sum in equation (1) in the large q region, are quite different
for different values of Pini. The nearly linear q–τ (q) curve for Pini = 0.01 representing the
homogeneous RPD and the slope almost equal to D imply that the homogeneity was distributed
over almost every active site. The q–τ (q) curves for different Pini coincide in the range q < 0
which implies that the numbers of active sites with a low reaction probability are nearly equal
for different values of Pini. The number of sites n(P) with probability P is plotted against
probability P for cases 1 and 2 in figures 6 and 7, respectively.

Figures 8(a) and (b) show the q–τ (q) relation for case 2, for the smooth surface with
different values of m and Pini, respectively. On comparing the q–τ (q) curves for case 2, for
different values of m and Pini, for the rough surface (figures 4(b) and 5(b)) and the smooth
surface (figures 8(a) and (b)), it can be seen that the q–τ (q) curves are linear for the former,
i.e. the smooth surface, whereas for the latter, they are nonlinear.

In figure 9, f (α) is plotted as a function of α to further explore the properties of RPD
for different m values with Pini = 1.0. From f (α) spectra, we first look at the range of α

values, which indicates the range of reaction probability. For both cases, the range of α values
increases with an increase in the values of m. This is similar to that of the DLR over DLA. For
case 1 the curves are shifted to the left with an increase in m. The maxima for these curves
are same which are nothing but τ (0) values for different m. But for case 2, as m decreases, the
curves contract upward at high α values. The linear q–τ (q) relation for m = 5 can also be seen
by a narrow range of α values and nearly symmetric pattern here. In both cases, the effect
caused by a faster decay rate on RPD can also be seen from the narrow range of α values and
symmetric pattern in the f (α) spectrum in figure 9. For case 2, the lower m is, the greater the
number of active sites and the higher the maximum in the α–f (α) curves.

Figure 10 shows the α–f (α) curves for cases 1 and 2, for different Pini values with m =
300. For case 1, as Pini increases the range of α values decreases. The maxima in the curves
are similar for Pini = 1, 0.7 and 0.4. It is expected that the numbers of active sites are the same
for these three values. But for Pini = 0.01, the maximum in the curve is less than the maxima
for the higher values of Pini, as the number of active sites decreases. For case 2, the range



Multifractal scaling analysis of autopoisoning reactions over a rough surface 3765

0.0000 0.0025 0.0050
0

10

20

30

40

50

60

70

Pini =1

n
(p

)

0.0025 0.0050

Pini =0.7

P
0.0025 0.0050

Pini =0.4

0.0025 0.0050

Pini =0.01

0.0000 0.0025 0.0050
0

5

10

15

20

25

30

35

m=300

n
(p

)

0.0025 0.0050

m=150

P
0.0025 0.0050

m=30

0.0025 0.0050

m=5

Figure 6. Number of sites n( p) with probability P against P for case 1 for a rough surface.

of α values increases with an increase in Pini. The narrow range of α values can be seen for
Pini = 0.01, as the q–τ (q) relation is nearly linear for this. The maxima in the α–f (α) curves
are not the same. The higher Pini is, the greater the number of active sites and the higher the
maximum in the α–f (α) curves.

In figures 11(a) and (b), the α–f (α) curves for case 2, for the smooth surface with
different values of m and Pini, respectively, are shown. The comparison between the α–f (α)

curves for case 2, for different values of m and Pini, for a rough surface (figures 9(b) and
10(b)) and a smooth surface (figures 11(a) and (b)), indicates that as the q–τ (q) curves are
linear for the smooth surface, the α–f (α) curves are narrow. But due to the nonlinearity in the
q–τ (q) curves, for the rough surface, the α–f (α) curves are wider. It clearly indicates how
the surface roughness affects the catalytic reactions. The values of Dq in equation (7) for q =
0, 2, −∞ and +∞ are also calculated and represented in table 2. Sun et al [31] also obtained
a wider range of α values for a rough surface than for the smooth surface. They have applied
multifractality to the atomic force microscope image of as-sputtered and annealed ZnO films.
The multifractal spectra were obtained by using the growth probabilities.
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Figure 7. Number of sites n( p) with probability P against P for case 2 for a rough surface.

Table 2. D0, D2, D−∞ and D+∞ values for cases 1 and 2 for different values of m and Pini (for
rough surface).

Case 1 Case 2

m/Pini D0 D2 D−∞ D+∞ D0 D2 D−∞ D+∞

m = 300 0.891 0.965 1.031 0.882 1.017 0.953 1.705 0.883
m = 150 0.891 1.032 1.048 0.921 1.050 1.010 1.707 0.921
m = 30 0.891 1.275 1.133 1.060 1.159 1.204 1.710 1.057
m = 5 0.891 1.653 1.303 1.255 1.207 1.496 1.522 1.258

Pini = 1 0.891 0.965 1.031 0.882 1.017 0.953 1.705 0.883
Pini = 0.7 0.891 1.055 1.088 0.923 0.999 1.045 1.705 0.925
Pini = 0.4 0.891 1.205 1.204 0.997 0.973 1.199 1.705 0.992
Pini = 0.01 0.891 2.280 1.706 1.435 0.861 2.302 1.708 1.455
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Figure 9. α–f (α) curves: (a) case 1, (b) case 2, with m = 300, 150, 30 and 5, for a rough surface.

The position sensitivity was further analysed by plotting the reaction probability as a
function of height of the surface, in figures 12 and 13, for different values of m and Pini,
respectively. From figures 12 and 13, it can be seen that the most active region is not the
outermost layer of the surface. From figure 12(a), for case 1, the numbers of active sites for
all the m values the same. From figure 12(b), for smaller m, the larger the number of active
sites. It is due to the superiority of height to reaction. When reactants randomly rain down
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Figure 10. α–f (α) curves: (a) case 1 (b) case 2, with Pini = 1.0, 0.7, 0.4 and 0.01, for a rough
surface.
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Figure 11. α–f (α) curves for a smooth surface with case 2, (a) for different values of m and (b)
for different values of Pini.

to the ith column, they will be more likely to react on the highest column among the i, i −1 and
i + 1 columns. Fewer numbers of active sites are caused by this effect especially when there is
no inter-column diffusion mechanism adopted in the first case. Much higher numbers of active
sites are found particularly in those cases with small tuning parameter m when an inter-column
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Figure 12. Reaction probability as a function of height of the surface, (a) case 1, (b) case 2, with
m = 300, 150, 30 and 5, for a rough surface.
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Figure 13. Reaction probability as a function of height of the surface, (a) case 1, (b) case 2, with
Pini = 1.0, 0.7, 0.4 and 0.01, for a rough surface.
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Figure 14. Reaction probability as a function of the height of the surface for case 2 with m = 300,
Fourier transform with 0.2 Hz frequency cutoff for low and high pass filters on probability, and the
numbers of columns having different heights.

diffusion mechanism is introduced. Smaller m means the sticking probability decreases more
rapidly in an autopoisoning reaction. This causes nonreacting particles to cross to lower
columns by inter-column diffusion and find more active sites.

Similarly, from figure 13(b), the higher Pini is, the more active sites there are. Once
Pini is very small, most reacting particles do not react. Even when inter-column diffusion is
introduced, the reactants can reach the local minimum easily, but reactions seldom take place
then and fewer active sites are found.

Fourier transform filtering with a low frequency pass is also performed on the reaction
probability function of height and is shown in figure 14. The frequency cutoff is selected to be
0.2 Hz where frequency the defined by

f = n

N�h
(8)

where there are N input data points with height separation �h. In figure 14, we have a
Gaussian function of h with centred value equal to 23.451 and standard deviation equal to
7.5595. Comparing the Gaussian curve with the curve of the number of columns with different
heights (which is also included in figure 14), in the region of height larger than 23, these two
curves coincide. But in the opposite region, these two curves differ a lot, because the screening
effect caused by the superiority of height to reaction plays an important role in this region
although the column population is denser in this region. Columns in this region will play more
important roles in reaction only when the degree of autopoisoning increases and causes more
inter-column diffusion.

Though we seem to have a symmetric Gaussian function at first sight, we might conclude
that the Gaussian type reaction probability distribution comes from the very nature of the
surface height distribution. But according to the above argument, different effects cause the
distribution to vary in different regions. The symmetric Gaussian distribution just happens
incidentally without much physical meaning.
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The high frequency pass curve is also plotted in figure 14. It provides us a rough picture
of now the number of column varies with different heights. From figure 14 fluctuations in
different curves coincide at exactly the same column height.

4. Conclusion

Multifractal scaling analysis of the reaction probability distribution was performed for a decay
type diffusion-limited reaction over a rough surface generated by a random deposition model
and on a smooth surface. The decay function was controlled by two parameters, namely,
the initial sticking probability and the decay rate. The number of active sites decreases with
decrease in the decay rate. A narrow range of α values in the α–f (α) spectrum is observed
for a faster decay rate. For the smooth surface, the range of α values in the α–f (α) spectrum
is narrow whereas for the rough surface we get a wider range of α.
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